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Abstract—In this paper, we present PERUN: an open-source
tool suite for profiling-based performance analysis. At its core,
PERUN maintains links between project versions and the corre-
sponding stored performance profiles, which are then leveraged
for automated detection of performance changes in new project
versions. The PERUN tool suite further includes multiple profilers
(and is designed such that further profilers can be easily added),
a performance fuzz-tester for workload generation, methods
for deriving performance models, and numerous visualization
methods. We demonstrate how PERUN can help developers to
analyze their program performance on two case studies: detection
and localization of a performance degradation and generation of
inputs forcing performance issues to show up.

Supplementary materials—git repository [1], demo video and
replication package [2], and a longer version of the paper [3].

Index Terms—version system, profiling, performance analysis,
fuzz-testing, performance testing.

I. INTRODUCTION

Performance bugs are a common problem in software de-
velopment, often encountered during new software releases.
Despite such bugs need not crash the software, neglecting them
can lead to losing the customers’ trust. Moreover, the need of
efficient software is nowadays becoming more important than
ever due to the rising scale of software and growing pressure
on saving resources such as, e.g., battery power on mobile
devices [4] or the huge power consumption of computing
centers [5]. Finally, software performance is also a matter of
security as performance bugs can be exploited to effectively
kill a system by some form of a denial-of-service attack (DoS),
making it run exceptionally long on some inputs.

Profiling-based analysis is arguably one of the most widely
adopted techniques used when analysing software perfor-
mance. Here, profiling means monitoring a running program
and collecting performance-related data, e.g., function call
counts, function run times, etc. These then need to be analysed
and possibly compared with previous profiling results to iden-
tify the most costly functions and to see if some performance
degradation did happen and what its root cause may be.

The described process is laborious and moreover repeating.
Indeed, before every new software release (at the latest), one
should profile the new version, analyze the results, compare
them with past profiling, and store the results for future
profiling. Hence, it is highly desirable to automate the process.
However, while there exist various widely-used open-source
profilers (e.g., GNU gprof or CALLGRIND), we are not
aware of any actively-maintained open-source solution that
would cover profiling-based performance analysis in a complex
way. Here, by complex, we mean solutions not focusing just

on collecting various performance metrics (on time, memory,
energy, etc.) but also on other needed steps (degradation
detection, workload generation, etc.). To address this gap, we
designed PERUN: a performance version system.

PERUN stores performance profiles for all chosen project
versions and maintains links between the project versions
and their profiles. These can then be used for automated
detection of performance changes, including creeping ones,
in new project versions. The PERUN tool suite also includes a
highly configurable runtime profiler called TRACER capable
of collecting various data about profiled C/C++ functions,
several other profilers (and a support for easily adding profilers
on further metrics and/or languages), a performance fuzz-
tester for generating suitable inputs for the program under
performance analysis (i.e., the so-called workloads), methods
for deriving performance models from saved profiles, as well
as numerous degradation detection and visualization methods.

Below, we first describe the architecture of PERUN and the
methods implemented in it, and then discuss various ways in
which it can be used. We illustrate the usefulness of PERUN on
two concrete tasks. First, we show how it can be used to auto-
matically detect and locate a degradation between two software
versions, namely a recent performance degradation introduced
in the 3.11.0a7 version of the CPYTHON interpreter [6].
Second, we present how PERUN can be used to automatically
generate inputs that force performance issues to manifest, e.g.,
to test different hashing algorithms or vulnerability against
ReDoS (regex denial of service) attacks.

II. ARCHITECTURE OF PERUN

PERUN consists of a tool suite and a wrapper over Version
Control Systems (VCS), such as git, that keeps track of
performance profiles for different project versions. Figure 1
shows the architecture of PERUN. It builds on a generic
JSON-based format for storing performance profiles and other
artifacts (e.g., performance models). To implement a flexible
and extensible automation of its various supported tasks, Perun
uses so-called runners that manage jobs: sequences of calls
of individual tools from its tool suite, i.e., data collectors,
methods deriving performance models, detection methods, or
tools used for interpretation of the results (e.g., various visu-
alisation methods). Jobs may produce profiles or other results
(such as performance models). PERUN’s tools share a simple
API, and developers can therefore easily register their own
tools. Moreover most PERUN’s tools are highly configurable,
allowing their fine-tuning based on domain knowledge of the
profiled program. PERUN also contains workload generators:
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Fig. 1: An overview of the PERUN’s architecture.

a fuzz-tester focused on generating time-consuming workloads
or automatic generators of gradually scaled workloads (e.g.,
longer and longer files) that are fed to the profiled program.

PERUN’s current profilers mainly focus on profiling the
runtime of functions or programs. The main runtime profiler is
TRACER (described in more detail below). PERUN further in-
cludes a lightweight runtime profiler with minimum overhead
that is simply a wrapper over the Unix time utility as well as
a memory profiler, which is, however, so far experimental and
not too scalable. Other profilers (such as CALLGRIND) can be
easily added to PERUN in a similar fashion as time.

Below, we describe selected tools of PERUN in more detail.
a) Tracer: TRACER leverages multiple instrumentation

frameworks to monitor programs and measure the runtime of
C/C++ functions while also keeping track of the call hierarchy
(i.e., the caller-callee relations). TRACER currently supports
the SystemTap [7] and the eBPF [8], [9] frameworks, and
can be extended by other frameworks. SYSTEMTAP injects in-
strumentation probes into the profiled program through an on-
demand-compiled kernel module; while eBPF applies a more
dynamic approach based on a lightweight in-kernel virtual
machine allowing better dynamic probe runtime manipulation
(e.g., probe activation/deactivation). Due to its rich parameter-
ization, TRACER is highly configurable, e.g., by choosing the
instrumentation framework, the functions to be monitored, or
the frequency with which they should be monitored.

TRACER works as follows: 1) It is invoked with the target
executables (including libraries). The functions to be instru-
mented can be specified by the user or extracted from the
executables automatically. 2) For every instrumented function,
TRACER assembles and compiles handlers that generate the
performance data. 3) It instruments the target executables,
invokes the profiled program and collects performance data
until the program terminates or a timeout is reached. More
precisely, the collected data are in the form of time stamps
recorded at the entry and exit of each instrumented function.
4) Finally, the raw performance data are parsed into a profile.

b) Models and Detection Techniques: PERUN allows one
to summarize profiles into performance models mostly having
the form of functions mapping input sequence numbers to

the expected runtime. By suitably constructing the workload,
the users can then get, e.g., the classical complexity models
(this is, Big-O classes such as linear, quadratic, etc.) showing
the dependence of runtime on the size of the input (by the
workload exercising the program/function for larger and larger
inputs), or to see how the performance is changing over time
(by providing inputs as they would arrive in time). Such
workloads can be generated by workload generators coming
with PERUN or implemented by the users. The derived models
are then used in PERUN’s performance degradation detection
methods and/or visualization methods.

PERUN currently supports four kinds of methods of deriving
performance models: the least-square regression line, regres-
sogram, moving average, and kernel regression line (for their
details, see, e.g., [10], [11] or the PERUN’s documentation).
For each function/profile we can, naturally, have multiple
models.

PERUN implements multiple methods of detecting changes
in the performance, ranging from simple heuristics to more
elaborate techniques, building on well-known principles from
the complexity theory and statistics. Each method can be
applied to each pair of profiles (or models obtained from them)
for the same functions in any pair of versions of the program
under analysis.

Here are three examples of the detection methods: 1) The
best model-order equality builds models representing vari-
ous asymptotic complexity classes of the involved functions
(linear, quadratic, etc.), selects those that are statistically the
most precise for the respective functions, and compares the
orders of the models considered the most precise for different
versions of a given function. 2) The integral comparison
approach is a heuristic based on an assumption that the
area under the performance models viewed as mathematical
functions should stay approximately the same: the technique
thus computes and compares the integrals of the most precise
models. 3) The exclusive-time outliers checks whether the
function’s exclusive runtime (not including the runtime of the
functions it calls) changes so much that it becomes an outlier
w.r.t. other functions based on a selected statistic (the z-score
or interquartile range).

c) Performance Fuzzing: PERUN’s tool suite includes
PERUN-FUZZ: an automated fuzz-testing generator of work-
loads focused on triggering performance issues. Fuzz-testing
is an approach of automated testing that feeds a program with
randomised or mutated inputs to force unexpected/untested
behaviour. However, most of the existing approaches focus
only on manifesting program crashes, memory leaks, or failed
assertions; not on manifesting performance issues.

Well-established fuzzers, such as afl [12], often build on
mutation rules that work on the level of bits in the binary
encoding of program inputs, for which, in our experience, it
may be difficult to derive inputs that could make performance
issues to surface. For PERUN-FUZZ, we developed mutation
rules inspired by various known performance issues such as
the following ones developed specifically for text-file inputs:
“double the size of a line” (inspired by the issues of the



gedit editor with long lines), “repeat a random word on
a line” (to force issues, e.g., in hash tables), “sort words or
numbers on a line” (to force issues in algorithms expecting
randomly sorted inputs), or “prepend whitespaces” (inspired
by the issues of Stack Overflow [13] that froze this web site).

Whenever a new workload is derived, the gcov tool that
measures code coverage (and counts also multiple visits of
a location) is used for a quick check whether the mutation led
to a coverage increased by more than some threshold. If so,
PERUN is used to profile the program and to check whether
some performance degradation did indeed happen and where.

III. USAGE OF PERUN

The most common usage of PERUN is to analyze newly
released program versions. The usual scenario goes as follows:
1) The user makes a set of code changes and commits them
into the repository of the program of interest. 2) The commit
triggers a new build of the program, and TRACER is used
over the resulting binary to collect new performance profiles
of the involved functions. 3) New performance models of the
functions are derived and stored. 4) Profiles and models of
the functions from the previous version are retrieved from the
persistent storage of PERUN. 5) For each pair of corresponding
previous and new profiles (or performance models, depending
on the detection method used), a selected performance degra-
dation detection method is run. 6) The method returns a set
of located performance changes with their severity (i.e., how
good or bad the change is), location (i.e. where the change has
happened), and confidence (i.e., how likely the change is real).

Another common usage scenario for PERUN is in debug-
ging. In its case, one can use the rich parameterization of
TRACER to switch between quick and thorough profiling
while, e.g., trying to locate some suspected bottlenecks or
opportunities for optimisation. To help this process, some of
the workload generators (generating, e.g., random files) or
the performance fuzzer PERUN-FUZZ may be used. Further,
to help understanding what happens with performance in
a given program, various well-established visualizations of
profiles and models implemented in PERUN can be used.
These include, e.g., scatter plots, bar plots, flamegraphs, or
flowgraphs (for some samples, see [2]).

PERUN can be used through its rich command-line interface,
but it can also be easily integrated with git hooks or other
continuous integration solutions so that checks for perfor-
mance degradation are triggered automatically upon a commit.
Moreover, adapters based on OSLC [14] and the UNITE and
UNIC tools [15], [16] are available for using PERUN as a web
service and for its integration with the Eclipse IDE.

IV. CASE STUDIES

We now demonstrate how PERUN and its tool suite can aid
developers with two common performance analysis tasks.

a) Finding Performance Degradations: First, we will
focus on showing how PERUN can help with identifying a per-
formance degradation and its root cause. In particular, we will
illustrate this on the CPYTHON project where a recent release

of the version 3.11.0a7 introduced a performance degradation
compared to the version 3.10.4. The problem appeared in the
ctypes module1. The developer who discovered the bug has
already proposed a fix; and the fix has been merged into the
upstream. In the following, we will replicate the issue and try
to detect it using PERUN.

CPYTHON comes with a benchmarking suite pyperfor-
mance that is used to evaluate the performance of various
modules. However, this particular issue has not been detected
by these benchmarks. Since the bug was reported and fixed,
a new benchmark targeting the ctypes module has been
implemented and is currently pending as a pull request at the
time of writing of this paper. Although the new benchmark
now retrospectively detects the presence of the ctypes
performance degradation, finding the exact source of the issue
can still pose a challenge as it requires a manual inspection
of all relevant code changes since the last version.

PERUN and its version-sensitive performance analysis can
nicely complement the benchmarking approach by automati-
cally flagging the offending function(s), thus aiding the devel-
opers in promptly hotfixing the issue. In our experiment, we
did the following steps, simulating what the developers could
have done with PERUN when going between the mentioned
versions: 1) We collected a baseline profile of the ctypes
benchmark, linked to the 3.10.4 release (normally, it would
already be stored in PERUN). 2) For the CPYTHON version
3.11.0a7, we ran perun collect with the same profiling
configuration of the ctypes benchmark as for the 3.10.4
release and obtained a target profile for the release 3.11.0a7.
3) Next, we ran perun check profiles to perform an
automated detection of performance changes between the
baseline and target profiles. We chose the exclusive time
outliers method for detecting the degradation. 4) The check
successfully identified the two functions that were responsible
for the performance degradation as shown in the below table:

Location Result ∆ [ms] ∆ [%]
ctypes init fielddesc NotInBaseline 77.95 5.23
ctypes get fielddesc SevereDegradation 52.9 3.55
ctypes callproc Degradation 2.84 0.19

. . .
ctypes.cpython-311 TotalDegradation 136.92 9.19

The ∆[ms] (∆[%]) is the absolute (relative) exclusive time
change w.r.t. the total duration of the program or library
which contains the function. Note that the total degradation
we measured is comparable to the degradation of around
8 % reported in the original issue. 5) We created a hotfix in
a new VCS branch hotfix-issue-92357 and repeated
the profiling to obtain a new target profile for the branch
hotfix-issue-92357. 6) Finally, we checked that the
fix was successful: we ran perun check profiles using
the original baseline and the new target profiles. This time,
the check report shows that both of the previously degraded
functions have comparable performance with the release 3.10.4
(see the table below). Note that the ctypes module still
reports a minor degradation, corresponding to the pyper-
formance benchmarking results.

1https://github.com/python/cpython/issues/92356



Location Result ∆ [ms] ∆ [%]
ctypes callproc SevereDegradation 9.7 0.7

. . .
ctypes get fielddesc MaybeDegradation 0.89 0.06
ctypes init fielddesc NotInBaseline 0.02 0.00
ctypes.cpython-311 TotalDegradation 23.45 1.70

In the usual profiling scenario, should the developer wish
to continue with optimizations, the next most severe degra-
dation would be targeted next. The exclusive time outliers
method aids the developer with this effort and reports a new
severe degradation, relative to the other found degradations:
ctypes callproc. To define a stopping point for this workflow,

a cut-off threshold for ∆ can be set, so that no degradations
or improvements below this threshold are reported.

For detection of creeping performance degradations, one
can utilize the same approach as above with a slight modifi-
cation only. Namely, the baseline profile should be selected
such that it corresponds to an older project version or release.

b) Inferring Interesting Workloads: In our second case
study, we will demonstrate how to automatically generate
workloads suitable for performance analysis. In this study,
we will use minimalistic single-purpose projects. We believe
that such programs are enough at least if our goal is to find
workloads for testing specific code patterns.

In particular, we will generate workloads to (1) identify
potentially expensive regex matching and (2) to compare the
efficiency of various hash functions used to implement a hash
table. For each experiment, we list the size of each workload
denoted as wi (with the starting, manually prepared workload
denoted as seed), the runtime of the program under test on the
given workload, the slowdown w.r.t. the runtime on the seed,
and the number of mutation rules that led to the workload.

First, we focus on regex matching that can be very expensive
for some matchers and some regexes, potentially admitting
a ReDoS (Regex Denial of Service) attack [17], [13], [18].
These were reported in various applications, e.g., the follow-
ing regex used for Java classname validation [17]: ˆ(([a-
z])+.)+[A-Z]([a-z])+$. The issue here is that the
developer did not escape the ‘.’ character, which makes some
matchers to perform an excessive number of backtracking
steps on some non-matching words.

We tested the std::regex search function with sev-
eral offending regexes that can cause ReDoS attacks. Below,
we present results for the above Java Classname validation
regex. For other regexes and results, see [2].

Java Class validation regex [17]
input size [B] time [s] slowdown used rules
seed 19 0.005 - -
w2 19 0.016 3.2 9
w3 36 1.587 317.4 6
w5 78 timeout (13h) ∞ 5

Clearly, at least for the considered regexes, we can find
problematic workloads with only a few applications of our
mutation rules. Indeed, some generated inputs were only 4x
bigger than the seed, yet leading to a timeout of thirteen hours.

Finally, we tested a simple word frequency counter that
uses a hash table. We compared its performance using two
different hash functions: (1) the hash function used in the Java

1.1 string library, which examined only 8–9 evenly spaced
characters, and, (2) the DJB hash function [19], one of the
most efficient hash functions. The results show that with
increasing sizes of the workload, the DJB hash function does
indeed perform in a much more stable way compared to the
inefficient implementation of Java 1.1.

Work Java 1.1. DJB
input size [kB] time [s] slowdown time [s] slowdown
seed 210 0.026 - 0.013 -
w6 458 0.115 4.4 0.027 2.1
w7 979 0.187 7.19 0.043 3.3

V. RELATED WORK

Perhaps the closest solution to PERUN is PERFREPO [20]
whose idea is similar to what PERUN aims to achieve, but
it covers profiling-based analysis in a less complex way
(e.g., it does not include a profiler, workload generation,
etc.) and it lacks a tight VCS integration (this is, it lacks
built-in linkage between profiles and project VCS versions).
Moreover, its development seems to be discontinued, based on
the GitHub repository activity. KIEKER [21] provides a tool
suite for performance data collection and results interpretation
but lacks any form of project version context. VALGRIND [22],
a widely-adopted profiling tool suite, lacks support for results
comparison, and VCS/CI integration.

A range of individual profilers, either sampling or event-
based, for heap, memory or CPU profiling exist. We can
list, e.g., OPROFILE [23], PERF [24], GNU gprof [25],
or gperftools [26]. Furthermore, we can mention var-
ious commercial solutions such as, e.g., the Intel V-Tune
Profiler [27], AMD µProf [28], Arm MAP [29], or the
Oracle Developer Studio Performance Analyzer [30]. Ad-
ditionally, there are other performance analysis tools based
on machine learning [31], code patterns [32], learning from
performance bug trackers [33], automated and compositional
load test generation [34], [35], checking correlation between
performance testing results [36], clustering and comparing
performance counters [37], or using statistical process control
techniques [38]. However, these tools do either not provide as
complex coverage of profiling-based performance analysis as
PERUN does (being often restricted to profiling only) and/or
they are not open source, often quite expensive and/or coming
with some additional hardware or software requirements for
unlocking their full potential.

Finally, as for performance fuzzing, the only tools of this
kind we are aware of are PERFFUZ [39] and BADGER [40].
Unlike PERUN-FUZZ, which is, however, just one part of
PERUN, they use other fuzzing rules, working on the binary
level as in afl (BADGER combines fuzzing with symbolic ex-
ecution too). As an alternative to performance fuzzing, causal
profiling [41] aims at finding particular functions to optimise
(by slowing down other functions to virtually simulate the
speed-up). PERFBLOWER [42] forces memory-related errors
by amplifying their effects on performance. A support of such
techniques could be added to PERUN in the future.
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